TY - JOUR
T1 - Disentangling coordination among functional traits using an individual-centred model
T2 - impact on plant performance at intra- and inter-specific levels
AU - Maire, Vincent
AU - Gross, Nicolas
AU - Hill, David
AU - Martin, Raphaël
AU - Wirth, Christian
AU - Wright, Ian J.
AU - Soussana, Jean François
N1 - Copyright the Author(s) 2013. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2013/10/9
Y1 - 2013/10/9
N2 - Background:Plant functional traits co-vary along strategy spectra, thereby defining trade-offs for resource acquisition and utilization amongst other processes. A main objective of plant ecology is to quantify the correlations among traits and ask why some of them are sufficiently closely coordinated to form a single axis of functional specialization. However, due to trait co-variations in nature, it is difficult to propose a mechanistic and causal explanation for the origin of trade-offs among traits observed at both intra- and inter-specific level.Methodology/Principal Findings:Using the Gemini individual-centered model which coordinates physiological and morphological processes, we investigated with 12 grass species the consequences of deliberately decoupling variation of leaf traits (specific leaf area, leaf lifespan) and plant stature (height and tiller number) on plant growth and phenotypic variability. For all species under both high and low N supplies, simulated trait values maximizing plant growth in monocultures matched observed trait values. Moreover, at the intraspecific level, plastic trait responses to N addition predicted by the model were in close agreement with observed trait responses. In a 4D trait space, our modeling approach highlighted that the unique trait combination maximizing plant growth under a given environmental condition was determined by a coordination of leaf, root and whole plant processes that tended to co-limit the acquisition and use of carbon and of nitrogen.Conclusion/Significance:Our study provides a mechanistic explanation for the origin of trade-offs between plant functional traits and further predicts plasticity in plant traits in response to environmental changes. In a multidimensional trait space, regions occupied by current plant species can therefore be viewed as adaptive corridors where trait combinations minimize allometric and physiological constraints from the organ to the whole plant levels. The regions outside this corridor are empty because of inferior plant performance.
AB - Background:Plant functional traits co-vary along strategy spectra, thereby defining trade-offs for resource acquisition and utilization amongst other processes. A main objective of plant ecology is to quantify the correlations among traits and ask why some of them are sufficiently closely coordinated to form a single axis of functional specialization. However, due to trait co-variations in nature, it is difficult to propose a mechanistic and causal explanation for the origin of trade-offs among traits observed at both intra- and inter-specific level.Methodology/Principal Findings:Using the Gemini individual-centered model which coordinates physiological and morphological processes, we investigated with 12 grass species the consequences of deliberately decoupling variation of leaf traits (specific leaf area, leaf lifespan) and plant stature (height and tiller number) on plant growth and phenotypic variability. For all species under both high and low N supplies, simulated trait values maximizing plant growth in monocultures matched observed trait values. Moreover, at the intraspecific level, plastic trait responses to N addition predicted by the model were in close agreement with observed trait responses. In a 4D trait space, our modeling approach highlighted that the unique trait combination maximizing plant growth under a given environmental condition was determined by a coordination of leaf, root and whole plant processes that tended to co-limit the acquisition and use of carbon and of nitrogen.Conclusion/Significance:Our study provides a mechanistic explanation for the origin of trade-offs between plant functional traits and further predicts plasticity in plant traits in response to environmental changes. In a multidimensional trait space, regions occupied by current plant species can therefore be viewed as adaptive corridors where trait combinations minimize allometric and physiological constraints from the organ to the whole plant levels. The regions outside this corridor are empty because of inferior plant performance.
UR - http://www.scopus.com/inward/record.url?scp=84885159162&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0077372
DO - 10.1371/journal.pone.0077372
M3 - Article
C2 - 24130879
AN - SCOPUS:84885159162
VL - 8
SP - 1
EP - 16
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 10
M1 - e77372
ER -