Dissolved barium causes toxicity to groundwater Cyclopoida

Merrin S. Adams*, Kitty S. McKnight, David M. Spadaro, Monique T. Binet, Grant C. Hose, Stephen Fenton, Stuart L. Simpson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Barium (Ba) dissolution and mobilization in groundwater are predominantly controlled by sulfate because of the low solubility of barium sulfate (BaSO4) minerals. Naturally present at low concentrations in groundwater, elevated concentrations of Ba can occur as a result of anthropogenic activities, including use of barite in drill operations, and geogenic sources such as leaching from geological formations. No toxicity data exist for Ba with groundwater organisms (stygofauna) to assess the risk of elevated Ba concentrations. The present study measured Ba toxicity to two stygobiont Cyclopoida species: one collected from Wellington and the other from Somersby, New South Wales, Australia. Toxicity was measured as cyclopoid survival over 2, 4, 7, 14, 21, and 28 days in waters of varying sulfate concentration (<1–100 mg SO4/L). When sulfate was present, dissolved Ba concentrations decreased rapidly in toxicity test solutions forming a BaSO4 precipitate until dissolved sulfate was depleted. Barium in excess of sulfate remained in the dissolved form. The toxicity of Ba to cyclopoids was clearly attributed to dissolved Ba. Precipitated Ba was not toxic to the Wellington cyclopoid species. Toxicity values for dissolved Ba for the Wellington and Somersby cyclopoid species included a (21-day) no-effect concentration of 3.3 mg/L and an effective concentration to cause 5% mortality of 4.8 mg/L (at 21 days). Elevated dissolved Ba concentrations due to anthropogenic and/or biogeochemical processes may pose a risk to groundwater organisms. Further toxicity testing with other stygobiont species is recommended to increase the data available to derive a guideline value for Ba that can be used in contaminant risk assessments for groundwaters. Environ Toxicol Chem 2024;00:1–14.

Original languageEnglish
JournalEnvironmental Toxicology and Chemistry
DOIs
Publication statusE-pub ahead of print - 13 Aug 2024

Keywords

  • Aquifer
  • Barite
  • Copepod
  • Drilling mud
  • Stygobiont

Cite this