Diverse dextranase genes from Paenibacillus species

Patrick M. Finnegan, Stevens M. Brumbley, Michael G. O'Shea, Helena Nevalainen, Peter L. Bergquist*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Genes encoding dextranolytic enzymes were isolated from Paenibacillus strains Dex40-8 and Dex50-2. Single, similar but non-identical dex1 genes were isolated from each strain, and a more divergent dex2 gene was isolated from strain Dex50-2. The protein deduced from the Dex40-8 dex1 gene sequence had 716 amino acids, with a predicted Mr of 80.8 kDa. The proteins deduced from the Dex50-2 dex1 and dex2 gene sequences had 905 and 596 amino acids, with predicted Mr of 100.1 kDa and 68.3 kDa, respectively. The deduced amino acid sequences of all three dextranolytic proteins had similarity to family 66 glycosyl hydrolases and were predicted to possess cleavable N-terminal signal peptides. Homology searches suggest that the Dex40-8 and Dex50-2 Dex1 proteins have one and two copies, respectively, of a carbohydrate-binding module similar to CBM_4_9 (pfam02018.11). The Dex50-2 Dex2 deduced amino acid sequence had highest sequence similarity to thermotolerant dextranases from thermophilic Paenibacillus strains, while the Dex40-8 and Dex50-2 Dex1 deduced protein sequences formed a distinct sequence clade among the family 66 proteins. Examination of seven Paenibacillus strains, using a polymerase chain reaction-based assay, indicated that multiple family 66 genes are common within this genus. The three recombinant proteins expressed in Escherichia coli possessed dextranolytic activity and were able to convert ethanol-insoluble blue dextran into an ethanol-soluble product, indicating they are endodextranases (EC 3.2.1.11). The reaction catalysed by each enzyme had a distinct temperature and pH dependence.

Original languageEnglish
Pages (from-to)140-147
Number of pages8
JournalArchives of Microbiology
Volume183
Issue number2
DOIs
Publication statusPublished - Feb 2005

Fingerprint

Dive into the research topics of 'Diverse dextranase genes from Paenibacillus species'. Together they form a unique fingerprint.

Cite this