Dosimetric characteristic of physical wedge versus enhanced dynamic wedge based on Monte Carlo simulations

Seied Rabie Mahdavi, Ghazale Geraily, Ahmad Mostaar, Arman Zia, Golbarg Esmaili, Somayeh Farahani

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
4 Downloads (Pure)

Abstract

Aim of Study: Physical wedges (PWs) are widely used in radiotherapy to obtain tilted isodose curves, but they alter beam quality. Dynamic wedges (DWs) using moving collimator overcome this problem, but measuring their beam data is not simple. The main aim of this study is to obtain all dosimetric parameters of DWs produced by Varian 2100CD with Monte Carlo simulation and compare them to those from PWs.

Subjects and Methods: To simulate 6 MV photon beams equipped with PW and DW, BEAMnrc code was used. All dosimetric data were obtained with EDR2 films and two-dimensional diode array detector.

Results: Good agreement between simulated and measured dosimetric data for PW and DW fields was obtained. Our results showed that percentage depth dose and beam profiles at nonwedged direction for DWs are the same as open fields and can be used to each other.

Conclusion: From Monte Carlo simulations, it can be concluded that DWs in spite of PW do not have effect on beam quality and are good options for treatment planning system which cannot consider hardening effect produced by PWs. Furthermore, BEAMnrc is a powerful code to acquire all date required by DWs.
Original languageEnglish
Pages (from-to)313-317
Number of pages5
JournalJournal of Cancer Research and Therapeutics
Volume13
Issue number2
DOIs
Publication statusPublished - 2017
Externally publishedYes

Bibliographical note

Copyright the Journal of Cancer Research and Therapeutics 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Enhanced dynamic wedge
  • Monte Carlo simulations
  • physical wedge

Fingerprint

Dive into the research topics of 'Dosimetric characteristic of physical wedge versus enhanced dynamic wedge based on Monte Carlo simulations'. Together they form a unique fingerprint.

Cite this