East Antarctic sources of extensive Lower–Middle Ordovician turbidites in the Lachlan Orogen, southern Tasmanides, eastern Australia

R. A. Glen, I. C. W. Fitzsimons, W. L. Griffin, A. Saeed

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ∼2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ∼2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.

LanguageEnglish
Pages143-224
Number of pages82
JournalAustralian Journal of Earth Sciences
Volume64
Issue number2
DOIs
Publication statusPublished - 2017

Fingerprint

Ordovician
zircon
Grenvillian orogeny
sandstone
terrane
forearc basin
sedimentary sequence
harbor
shallow water
granite
backarc basin
turbidity current
muscovite
Gondwana
island arc
craton
continental margin
bedrock
deep water
isotope

Keywords

  • Detrital zircon dating
  • U–Pb
  • Hf isotopes
  • turbidites
  • sediment sources
  • Antarctica
  • Lachlan Orogen
  • Tasmanides

Cite this

@article{1b1f059a633a46eb8ea461513cc5a324,
title = "East Antarctic sources of extensive Lower–Middle Ordovician turbidites in the Lachlan Orogen, southern Tasmanides, eastern Australia",
abstract = "Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ∼2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, S{\o}r Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ∼2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.",
keywords = "Detrital zircon dating, U–Pb, Hf isotopes, turbidites, sediment sources, Antarctica, Lachlan Orogen, Tasmanides",
author = "Glen, {R. A.} and Fitzsimons, {I. C. W.} and Griffin, {W. L.} and A. Saeed",
year = "2017",
doi = "10.1080/08120099.2017.1273256",
language = "English",
volume = "64",
pages = "143--224",
journal = "Australian Journal of Earth Sciences",
issn = "0812-0099",
publisher = "Blackwell Publishing Asia",
number = "2",

}

East Antarctic sources of extensive Lower–Middle Ordovician turbidites in the Lachlan Orogen, southern Tasmanides, eastern Australia. / Glen, R. A.; Fitzsimons, I. C. W.; Griffin, W. L.; Saeed, A.

In: Australian Journal of Earth Sciences, Vol. 64, No. 2, 2017, p. 143-224.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - East Antarctic sources of extensive Lower–Middle Ordovician turbidites in the Lachlan Orogen, southern Tasmanides, eastern Australia

AU - Glen, R. A.

AU - Fitzsimons, I. C. W.

AU - Griffin, W. L.

AU - Saeed, A.

PY - 2017

Y1 - 2017

N2 - Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ∼2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ∼2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.

AB - Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ∼2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ∼2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.

KW - Detrital zircon dating

KW - U–Pb

KW - Hf isotopes

KW - turbidites

KW - sediment sources

KW - Antarctica

KW - Lachlan Orogen

KW - Tasmanides

UR - http://www.scopus.com/inward/record.url?scp=85015233780&partnerID=8YFLogxK

U2 - 10.1080/08120099.2017.1273256

DO - 10.1080/08120099.2017.1273256

M3 - Article

VL - 64

SP - 143

EP - 224

JO - Australian Journal of Earth Sciences

T2 - Australian Journal of Earth Sciences

JF - Australian Journal of Earth Sciences

SN - 0812-0099

IS - 2

ER -