Abstract
This paper presents a novel approach for classifying the electroencephalogram (EEG) signals as normal or abnormal. This method uses features derived from the instantaneous frequency (IF) and energies of EEG signals in different spectral sub-bands. Results of applying the method to a database of real signals reveal that, for the given classification task, the selected features consistently exhibit a high degree of discrimination between the EEG signals collected from healthy and epileptic patients. The analysis of the effect of window length used during feature extraction indicates that features extracted from EEG segments as short as 5 seconds achieve a high average total accuracy of 95.3%.
Original language | English |
---|---|
Title of host publication | 2011 7th International Workshop on Systems, Signal Processing and their Applications (WoSSPA) |
Place of Publication | Algeria |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 187-190 |
Number of pages | 4 |
ISBN (Electronic) | 9781457706905 |
ISBN (Print) | 9781457706899 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Event | International Workshop on Systems, Signal Processing and their Applications, WOSSPA 2011 - Tipaza, Algeria Duration: 9 May 2011 → 11 May 2011 |
Conference
Conference | International Workshop on Systems, Signal Processing and their Applications, WOSSPA 2011 |
---|---|
Country/Territory | Algeria |
City | Tipaza |
Period | 9/05/11 → 11/05/11 |