Effect of slip on the linear stability of the rotating disk boundary layer

Christian Thomas, Burhan Alveroğlu, Sharon O. Stephen, Mushrifah A. S. Al-Malki, Zahir Hussain

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
31 Downloads (Pure)

Abstract

The linear stability of the rotating disk boundary layer with surface roughness is investigated. Surface roughness is modeled using slip boundary conditions [M. Miklavčič and C. Y. Wang, Z. Angew. Math. Phys. 55, 235-246 (2004)], which establish concentric grooves, radial grooves, and isotropic roughness. The effect on the stationary crossflow and Coriolis instabilities is analyzed by applying slip conditions to the undisturbed flow and linear disturbances. This analysis builds on the work of Cooper et al. [Phys. Fluids 27, 014107 (2015)], who modeled slip effects on the base flow but applied the no-slip condition to the linear perturbations. Neutral stability curves and critical parameter settings for linearly unstable behavior are computed for several radial and azimuthal slip length settings. The application of slip on the linear disturbances has a significant impact on the flow stability. In particular, the Coriolis instability undergoes considerable destabilization in the instance of concentric grooves (i.e., radial slip) and radial grooves with sufficiently large azimuthal slip lengths. In addition, concentric grooves destabilize the crossflow instability when the radial slip length is small. Moreover, in the instance of isotropic roughness, the stabilizing effect is markedly less than the observations of Cooper et al. [Phys. Fluids 27, 014107 (2015)]. Finally, an energy analysis is undertaken to ascertain the physical mechanisms brought about by surface roughness.

Original languageEnglish
Article number084118
Pages (from-to)084118-1-084118-18
Number of pages18
JournalPhysics of Fluids
Volume35
Issue number8
DOIs
Publication statusPublished - Aug 2023

Bibliographical note

Copyright 2023 Author(s). Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Effect of slip on the linear stability of the rotating disk boundary layer'. Together they form a unique fingerprint.

Cite this