Effects of two commercial electronic prescribing systems on prescribing error rates in hospital in-patients: a before and after study

Johanna I. Westbrook, Margaret Reckmann, Ling Li, William B. Runciman, Rosemary Burke, Connie Lo, Melissa T. Baysari, Jeffrey Braithwaite, Richard O. Day

Research output: Contribution to journalArticlepeer-review

164 Citations (Scopus)
33 Downloads (Pure)

Abstract

Background: Considerable investments are being made in commercial electronic prescribing systems (e-prescribing) in many countries. Few studies have measured or evaluated their effectiveness at reducing prescribing error rates, and interactions between system design and errors are not well understood, despite increasing concerns regarding new errors associated with system use. This study evaluated the effectiveness of two commercial e-prescribing systems in reducing prescribing error rates and their propensities for introducing new types of error. Methods and Results: We conducted a before and after study involving medication chart audit of 3,291 admissions (1,923 at baseline and 1,368 post e-prescribing system) at two Australian teaching hospitals. In Hospital A, the Cerner Millennium e-prescribing system was implemented on one ward, and three wards, which did not receive the e-prescribing system, acted as controls. In Hospital B, the iSoft MedChart system was implemented on two wards and we compared before and after error rates. Procedural (e.g., unclear and incomplete prescribing orders) and clinical (e.g., wrong dose, wrong drug) errors were identified. Prescribing error rates per admission and per 100 patient days; rates of serious errors (5-point severity scale, those ≥3 were categorised as serious) by hospital and study period; and rates and categories of postintervention "system-related" errors (where system functionality or design contributed to the error) were calculated. Use of an e-prescribing system was associated with a statistically significant reduction in error rates in all three intervention wards (respectively reductions of 66.1% [95% CI 53.9%-78.3%]; 57.5% [33.8%-81.2%]; and 60.5% [48.5%-72.4%]). The use of the system resulted in a decline in errors at Hospital A from 6.25 per admission (95% CI 5.23-7.28) to 2.12 (95% CI 1.71-2.54; p<0.0001) and at Hospital B from 3.62 (95% CI 3.30-3.93) to 1.46 (95% CI 1.20-1.73; p<0.0001). This decrease was driven by a large reduction in unclear, illegal, and incomplete orders. The Hospital A control wards experienced no significant change (respectively -12.8% [95% CI -41.1% to 15.5%]; -11.3% [-40.1% to 17.5%]; -20.1% [-52.2% to 12.4%]). There was limited change in clinical error rates, but serious errors decreased by 44% (0.25 per admission to 0.14; p = 0.0002) across the intervention wards compared to the control wards (17% reduction; 0.30-0.25; p = 0.40). Both hospitals experienced system-related errors (0.73 and 0.51 per admission), which accounted for 35% of postsystem errors in the intervention wards; each system was associated with different types of system-related errors. Conclusions: Implementation of these commercial e-prescribing systems resulted in statistically significant reductions in prescribing error rates. Reductions in clinical errors were limited in the absence of substantial decision support, but a statistically significant decline in serious errors was observed. System-related errors require close attention as they are frequent, but are potentially remediable by system redesign and user training. Limitations included a lack of control wards at Hospital B and an inability to randomize wards to the intervention.

Original languageEnglish
Article numbere1001164
Pages (from-to)1-11
Number of pages11
JournalPLoS Medicine
Volume9
Issue number1
DOIs
Publication statusPublished - Jan 2012
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2013. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Effects of two commercial electronic prescribing systems on prescribing error rates in hospital in-patients: a before and after study'. Together they form a unique fingerprint.

Cite this