Abstract
In this paper, we propose the first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties The algorithm we propose is a symbolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic algorithm may terminate long before having explored the entire state-space. Also the individual steps of the algorithm are carried out efficiently by the use of so-called zones as the underlying data structure. Various optimizations of the basic symbolic algorithm are proposed as well as methods for obtaining time-optimal winning strategies (for reachability games). Extensive evaluation of an experimental implementation of the algorithm yields very encouraging performance results.
Original language | English |
---|---|
Pages (from-to) | 66-80 |
Number of pages | 15 |
Journal | Lecture Notes in Computer Science |
Volume | 3653 |
Publication status | Published - 2005 |
Externally published | Yes |