Electrophysiological correlates of anticipatory and poststimulus components of task switching

Frini Karayanidis*, Max Coltheart, Patricia T. Michie, Karen Murphy

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    193 Citations (Scopus)


    Task-switching paradigms can shed light on cognitive and neural processes underlying attentional control mechanisms. An alternating runs task-switching paradigm (R. D. Rogers & S. Monsell, 1995) is used to identify ERP components associated with anticipatory and poststimulus components of task-switching processes. Subjects alternated between two tasks in a predictable series (AABB). Reaction time (RT) switch cost reduced with increasing response-stimulus (R-S) interval and a residual switch cost remained at the longest R-S interval. A switch-related positivity (D-Pos) developed in the R-S interval. D-Pos was time-locked to response onset, peaked around 400 ms post-response onset, and was unaffected by task-set interference. A switch-related negativity (D-Neg) emerged after stimulus onset. D-Neg peaked earlier with increasing R-S interval and its amplitude and latency were affected by task-set interference. D-Pos and D-Neg were interpreted within current models of task-switching.

    Original languageEnglish
    Pages (from-to)329-348
    Number of pages20
    Issue number3
    Publication statusPublished - May 2003


    Dive into the research topics of 'Electrophysiological correlates of anticipatory and poststimulus components of task switching'. Together they form a unique fingerprint.

    Cite this