TY - JOUR
T1 - Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China
T2 - implications for the formation and evolution of the basin basement
AU - Zheng, Jianping
AU - Sun, Min
AU - Zhao, Guochun
AU - Robinson, Paul T.
AU - Wang, Fangzheng
PY - 2007/3/1
Y1 - 2007/3/1
N2 - The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr-Nd-Pb isotopic compositions and zircon Pb-Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb-Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.
AB - The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr-Nd-Pb isotopic compositions and zircon Pb-Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb-Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.
KW - Heterogeneous basement
KW - Junggar basin
KW - Late Paleozoic volcanic rocks
KW - Lava geochemistry
KW - NW China
KW - Oceanic crust
KW - Sr-Nd-Pb isotopes
UR - http://www.scopus.com/inward/record.url?scp=33847229763&partnerID=8YFLogxK
U2 - 10.1016/j.jseaes.2006.05.004
DO - 10.1016/j.jseaes.2006.05.004
M3 - Article
AN - SCOPUS:33847229763
VL - 29
SP - 778
EP - 794
JO - Journal of Asian Earth Sciences
JF - Journal of Asian Earth Sciences
SN - 1367-9120
IS - 5-6
ER -