TY - JOUR
T1 - Endothelial cell proliferation in the choriocapillaris during human retinal differentiation
AU - Allende, Alexandra
AU - Madigan, M. C.
AU - Provis, J. M.
PY - 2006/8
Y1 - 2006/8
N2 - Background: Differentiation patterns of the neural retina and its retinal vasculature are not well matched. The foveal region differentiates first, however the central retina is not vascularised until late in gestation. The authors explored the hypothesis that higher rates of endothelial cell proliferation in the choriocapillaris of the central retina might compensate for the slow growth of central retinal vessels, providing supplementary nutrients to the region during the early stages of neuronal maturation. Methods: Frozen sections of five human fetal eyes (14-18.5 weeks' gestation), were examined for Ki-67 and CD34 immunoreactivity using confocal microscopy. Measurements of choriocapillaris area and the number of proliferating choroidal endothelial cells were used to calculate the rate of choroidal endothelial proliferation at five different chorioretinal locations. Results: The choriocapillaris area is consistently greater in the foveal region than at other locations and increases progressively with age. A higher rate of endothelial cell proliferation was found in parts of the choriocapillaris associated with the undifferentiated (proliferating) neural retina, compared with the differentiated, central region. Conclusion: The findings suggest that mechanisms regulating proliferation and growth of the choroidal vasculature are independent of differentiation in the neural retina, and are thus profoundly different from mechanisms that regulate formation of the retinal vasculature.
AB - Background: Differentiation patterns of the neural retina and its retinal vasculature are not well matched. The foveal region differentiates first, however the central retina is not vascularised until late in gestation. The authors explored the hypothesis that higher rates of endothelial cell proliferation in the choriocapillaris of the central retina might compensate for the slow growth of central retinal vessels, providing supplementary nutrients to the region during the early stages of neuronal maturation. Methods: Frozen sections of five human fetal eyes (14-18.5 weeks' gestation), were examined for Ki-67 and CD34 immunoreactivity using confocal microscopy. Measurements of choriocapillaris area and the number of proliferating choroidal endothelial cells were used to calculate the rate of choroidal endothelial proliferation at five different chorioretinal locations. Results: The choriocapillaris area is consistently greater in the foveal region than at other locations and increases progressively with age. A higher rate of endothelial cell proliferation was found in parts of the choriocapillaris associated with the undifferentiated (proliferating) neural retina, compared with the differentiated, central region. Conclusion: The findings suggest that mechanisms regulating proliferation and growth of the choroidal vasculature are independent of differentiation in the neural retina, and are thus profoundly different from mechanisms that regulate formation of the retinal vasculature.
UR - http://www.scopus.com/inward/record.url?scp=33746539931&partnerID=8YFLogxK
U2 - 10.1136/bjo.2006.092080
DO - 10.1136/bjo.2006.092080
M3 - Article
C2 - 16613918
AN - SCOPUS:33746539931
SN - 0007-1161
VL - 90
SP - 1046
EP - 1051
JO - British Journal of Ophthalmology
JF - British Journal of Ophthalmology
IS - 8
ER -