Endothelial molecular changes in a rodent model of arteriovenous malformation: Laboratory investigation

Athula Karunanyaka, Jian Tu, Amy Watling, Kingsley P. Storer, Apsara Windsor, Marcus A. Stoodley

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)


    Object. The cellular and molecular processes underlying arteriovenous malformation (AVM) development and response to radiosurgery are largely unknown. An animal model mimicking the molecular properties of AVMs is required to examine these processses. This study was performed to determine whether the endothelial molecular changes in an animal model of arteriovenous fistula (AVF) are similar to those in human AVMs. Methods. Arteriovenous fistulas were created in 18 Sprague-Dawley rats by end-to-side anastomosis of the left jugular vein to the common carotid artery creating a model "nidus" of arterialized branching veins that coalesce into a "draining vein" (sigmoid sinus). Six control animals underwent sham operations. Results. After 1 or 3 days, or 1, 3, 6, or 12 weeks, fresh-frozen sections of the fistula, nidus vessels, and contralateral vessels were studied immunohistochemically for thrombomodulin, von Willebrand factor, E-selectin, P-selectin, and vascular endothelial growth factor. Conclusions. The AVF model has a "nidus" with endothelial molecular changes similar to those observed in human AVMs, supporting its use as a model for studying the effects of radiosurgery on AVMs.

    Original languageEnglish
    Pages (from-to)1165-1172
    Number of pages8
    JournalJournal of Neurosurgery
    Issue number6
    Publication statusPublished - Dec 2008


    Dive into the research topics of 'Endothelial molecular changes in a rodent model of arteriovenous malformation: Laboratory investigation'. Together they form a unique fingerprint.

    Cite this