Environmental quenching of low-surface-brightness galaxies near hosts from large Magellanic Cloud to Milky Way Mass scales

J. Bhattacharyya, A. H.G. Peter, P. Martini, B. Mutlu-Pakdil, A. Drlica-Wagner, A. B. Pace, L. E. Strigari, T. -Y. Cheng, D. Roberts, D. Tanoglidis, M. Aguena, O. Alves, F. Andrade-Oliveira, D. Bacon, D. Brooks, A. Carnero Rosell, J. Carretero, L. N. da Costa, M. E. S. Pereira, T. M. DavisS. Desai, P. Doel, I. Ferrero, J. Frieman, J. García-Bellido, G. Giannini, D. Gruen, R. A. Gruendl, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, J. L. Marshall, J. Mena-Fernández, R. Miquel, A. Palmese, A. Pieres, A. A. Plazas Malagón, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, M. Vincenzi, A. R. Walker, N. Weaverdyck, P. Wiseman, Dark Energy Survey Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightness meff, g > 24.2 mag arcsec-2 are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses 9.0 < log(M* /M) < 11.0 comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax-Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split by g − i color or surface brightness μeff, g, we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed.

Original languageEnglish
Article number244
Pages (from-to)1-17
Number of pages17
JournalAstrophysical Journal
Volume975
Issue number2
DOIs
Publication statusPublished - 6 Nov 2024

Bibliographical note

Copyright the Author(s) 2024. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Cite this