Enzymology of alternative carbohydrate catabolic pathways

Dominik Kopp, Peter L. Bergquist, Anwar Sunna*

*Corresponding author for this work

Research output: Contribution to journalReview article

1 Downloads (Pure)

Abstract

The Embden-Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in molecular biology, these pathways account for the catabolism of glucose. The existence of pathways for other carbohydrates that are relevant to biomass utilization has been recognized as new strains have been characterized among thermophilic bacteria and Archaea that are able to transform simple polysaccharides from biomass to more complex and potentially valuable precursors for industrial microbiology. Many of the variants of the ED pathway have the key dehydratase enzyme involved in the oxidation of sugar derived from different families such as the enolase, IlvD/EDD and xylose-isomerase-like superfamilies. There are the variations in structure of proteins that have the same specificity and generally greater-than-expected substrate promiscuity. Typical biomass lignocellulose has an abundance of xylan, and four different pathways have been described, which include theWeimberg and Dahms pathways initially oxidizing xylose to xylono-gamma-lactone/xylonic acid, as well as the major xylose isomerase pathway. The recent realization that xylan constitutes a large proportion of biomass has generated interest in exploiting the compound for value-added precursors, but few chassis microorganisms can grow on xylose. Arabinose is part of lignocellulose biomass and can be metabolized with similar pathways to xylose, as well as an oxidative pathway. Like enzymes in many non-phosphorylative carbohydrate pathways, enzymes involved in L-arabinose pathways from bacteria and Archaea show metabolic and substrate promiscuity. A similar multiplicity of pathways was observed for other biomass-derived sugars such as L-rhamnose and L-fucose, but D-mannose appears to be distinct in that a non-phosphorylative version of the ED pathway has not been reported. Many bacteria and Archaea are able to grow on mannose but, as with other minor sugars, much of the information has been derived from whole cell studies with additional enzyme proteins being incorporated, and so far, only one synthetic pathway has been described. There appears to be a need for further discovery studies to clarify the general ability of many microorganisms to grow on the rarer sugars, as well as evaluation of the many gene copies displayed by marine bacteria.

Original languageEnglish
Article number1231
Number of pages25
JournalCatalysts
Volume10
Issue number11
DOIs
Publication statusPublished - Nov 2020

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Carbon metabolism
  • Non-phosphorylative pathways
  • Dehydratases
  • Aldolases
  • Alternative metabolism of sugars

Fingerprint Dive into the research topics of 'Enzymology of alternative carbohydrate catabolic pathways'. Together they form a unique fingerprint.

Cite this