Establishing a risk-assessment process for release of genetically modified wine yeast into the environment

Heidi Schoeman, Gideon M. Wolfaardt, Alfred Botha, Pierre Van Rensburg, Isak S. Pretorius

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The use and release of genetically modified organisms (GMOs) is an issue of intense public concern and, in the case of food and beverages, products containing GMOs or products thereof carry the risk of consumer rejection. The recent commercialization of 2 GM wine yeasts in the United States and Canada has made research and development of risk assessments for GM microorganisms a priority. The purpose of this study was to take a first step in establishing a risk-assessment process for future use and potential release of GM wine yeasts into the environment. The behaviour and spread of a GM wine yeast was monitored in saturated sand columns, saturated sand flow cells, and conventional flow cells. A widely used commercial Saccharomyces cerevisiae wine yeast, VIN13, a VIN13 transgenic strain (LKA1, which carries the LKA1 α-amylase gene of Lipomyces kononenkoae), a soil bacterium (Dyadobacter fermentens), and a nonwine soil-borne yeast (Cryptococcus laurentii) were compared in laboratory-scale microcosm systems designed to monitor microbial mobility behaviour, survival, and attachment to surfaces. It was found that LKA1 cells survived in saturated sand columns, but showed little mobility in the porous matrix, suggesting that the cells attached with high efficiency to sand. There was no significant difference between the mobility patterns of LKA1 and VIN13. All 3 yeasts (VIN13, LKA1, and C. laurentii) were shown to form stable biofilms; the 2 S. cerevisiae strains either had no difference in biofilm density or the LKA1 biofilm was less dense than that of VIN13. When co-inoculated with C. laurentii, LKA1 had no negative influence on the breakthrough of the Cryptococcus yeast in a sand column or on its ability to form biofilms. In addition, LKA1 did not successfully integrate into a stable mixed-biofilm community, nor did it disrupt the biofilm community. Overall, it was concluded that the LKA1 transgenic yeast had the same reproductive success as VIN13 in these 3 microcosms and had no selective advantage over the untransformed parental strain.

LanguageEnglish
Pages990-1002
Number of pages13
JournalCanadian Journal of Microbiology
Volume55
Issue number8
DOIs
Publication statusPublished - Aug 2009
Externally publishedYes

Fingerprint

Wine
Biofilms
Yeasts
Genetically Modified Organisms
Cryptococcus
Saccharomyces cerevisiae
Lipomyces
Soil
Food and Beverages
alpha-Amylases
Canada
Bacteria
Research
Genes

Cite this

Schoeman, Heidi ; Wolfaardt, Gideon M. ; Botha, Alfred ; Van Rensburg, Pierre ; Pretorius, Isak S. / Establishing a risk-assessment process for release of genetically modified wine yeast into the environment. In: Canadian Journal of Microbiology. 2009 ; Vol. 55, No. 8. pp. 990-1002.
@article{bfd5971761f749f8b8b37a6a849ff6b1,
title = "Establishing a risk-assessment process for release of genetically modified wine yeast into the environment",
abstract = "The use and release of genetically modified organisms (GMOs) is an issue of intense public concern and, in the case of food and beverages, products containing GMOs or products thereof carry the risk of consumer rejection. The recent commercialization of 2 GM wine yeasts in the United States and Canada has made research and development of risk assessments for GM microorganisms a priority. The purpose of this study was to take a first step in establishing a risk-assessment process for future use and potential release of GM wine yeasts into the environment. The behaviour and spread of a GM wine yeast was monitored in saturated sand columns, saturated sand flow cells, and conventional flow cells. A widely used commercial Saccharomyces cerevisiae wine yeast, VIN13, a VIN13 transgenic strain (LKA1, which carries the LKA1 α-amylase gene of Lipomyces kononenkoae), a soil bacterium (Dyadobacter fermentens), and a nonwine soil-borne yeast (Cryptococcus laurentii) were compared in laboratory-scale microcosm systems designed to monitor microbial mobility behaviour, survival, and attachment to surfaces. It was found that LKA1 cells survived in saturated sand columns, but showed little mobility in the porous matrix, suggesting that the cells attached with high efficiency to sand. There was no significant difference between the mobility patterns of LKA1 and VIN13. All 3 yeasts (VIN13, LKA1, and C. laurentii) were shown to form stable biofilms; the 2 S. cerevisiae strains either had no difference in biofilm density or the LKA1 biofilm was less dense than that of VIN13. When co-inoculated with C. laurentii, LKA1 had no negative influence on the breakthrough of the Cryptococcus yeast in a sand column or on its ability to form biofilms. In addition, LKA1 did not successfully integrate into a stable mixed-biofilm community, nor did it disrupt the biofilm community. Overall, it was concluded that the LKA1 transgenic yeast had the same reproductive success as VIN13 in these 3 microcosms and had no selective advantage over the untransformed parental strain.",
author = "Heidi Schoeman and Wolfaardt, {Gideon M.} and Alfred Botha and {Van Rensburg}, Pierre and Pretorius, {Isak S.}",
year = "2009",
month = "8",
doi = "10.1139/W09-039",
language = "English",
volume = "55",
pages = "990--1002",
journal = "Canadian Journal of Microbiology",
issn = "0008-4166",
publisher = "National Research Council of Canada",
number = "8",

}

Establishing a risk-assessment process for release of genetically modified wine yeast into the environment. / Schoeman, Heidi; Wolfaardt, Gideon M.; Botha, Alfred; Van Rensburg, Pierre; Pretorius, Isak S.

In: Canadian Journal of Microbiology, Vol. 55, No. 8, 08.2009, p. 990-1002.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Establishing a risk-assessment process for release of genetically modified wine yeast into the environment

AU - Schoeman, Heidi

AU - Wolfaardt, Gideon M.

AU - Botha, Alfred

AU - Van Rensburg, Pierre

AU - Pretorius, Isak S.

PY - 2009/8

Y1 - 2009/8

N2 - The use and release of genetically modified organisms (GMOs) is an issue of intense public concern and, in the case of food and beverages, products containing GMOs or products thereof carry the risk of consumer rejection. The recent commercialization of 2 GM wine yeasts in the United States and Canada has made research and development of risk assessments for GM microorganisms a priority. The purpose of this study was to take a first step in establishing a risk-assessment process for future use and potential release of GM wine yeasts into the environment. The behaviour and spread of a GM wine yeast was monitored in saturated sand columns, saturated sand flow cells, and conventional flow cells. A widely used commercial Saccharomyces cerevisiae wine yeast, VIN13, a VIN13 transgenic strain (LKA1, which carries the LKA1 α-amylase gene of Lipomyces kononenkoae), a soil bacterium (Dyadobacter fermentens), and a nonwine soil-borne yeast (Cryptococcus laurentii) were compared in laboratory-scale microcosm systems designed to monitor microbial mobility behaviour, survival, and attachment to surfaces. It was found that LKA1 cells survived in saturated sand columns, but showed little mobility in the porous matrix, suggesting that the cells attached with high efficiency to sand. There was no significant difference between the mobility patterns of LKA1 and VIN13. All 3 yeasts (VIN13, LKA1, and C. laurentii) were shown to form stable biofilms; the 2 S. cerevisiae strains either had no difference in biofilm density or the LKA1 biofilm was less dense than that of VIN13. When co-inoculated with C. laurentii, LKA1 had no negative influence on the breakthrough of the Cryptococcus yeast in a sand column or on its ability to form biofilms. In addition, LKA1 did not successfully integrate into a stable mixed-biofilm community, nor did it disrupt the biofilm community. Overall, it was concluded that the LKA1 transgenic yeast had the same reproductive success as VIN13 in these 3 microcosms and had no selective advantage over the untransformed parental strain.

AB - The use and release of genetically modified organisms (GMOs) is an issue of intense public concern and, in the case of food and beverages, products containing GMOs or products thereof carry the risk of consumer rejection. The recent commercialization of 2 GM wine yeasts in the United States and Canada has made research and development of risk assessments for GM microorganisms a priority. The purpose of this study was to take a first step in establishing a risk-assessment process for future use and potential release of GM wine yeasts into the environment. The behaviour and spread of a GM wine yeast was monitored in saturated sand columns, saturated sand flow cells, and conventional flow cells. A widely used commercial Saccharomyces cerevisiae wine yeast, VIN13, a VIN13 transgenic strain (LKA1, which carries the LKA1 α-amylase gene of Lipomyces kononenkoae), a soil bacterium (Dyadobacter fermentens), and a nonwine soil-borne yeast (Cryptococcus laurentii) were compared in laboratory-scale microcosm systems designed to monitor microbial mobility behaviour, survival, and attachment to surfaces. It was found that LKA1 cells survived in saturated sand columns, but showed little mobility in the porous matrix, suggesting that the cells attached with high efficiency to sand. There was no significant difference between the mobility patterns of LKA1 and VIN13. All 3 yeasts (VIN13, LKA1, and C. laurentii) were shown to form stable biofilms; the 2 S. cerevisiae strains either had no difference in biofilm density or the LKA1 biofilm was less dense than that of VIN13. When co-inoculated with C. laurentii, LKA1 had no negative influence on the breakthrough of the Cryptococcus yeast in a sand column or on its ability to form biofilms. In addition, LKA1 did not successfully integrate into a stable mixed-biofilm community, nor did it disrupt the biofilm community. Overall, it was concluded that the LKA1 transgenic yeast had the same reproductive success as VIN13 in these 3 microcosms and had no selective advantage over the untransformed parental strain.

UR - http://www.scopus.com/inward/record.url?scp=69249154580&partnerID=8YFLogxK

U2 - 10.1139/W09-039

DO - 10.1139/W09-039

M3 - Article

VL - 55

SP - 990

EP - 1002

JO - Canadian Journal of Microbiology

T2 - Canadian Journal of Microbiology

JF - Canadian Journal of Microbiology

SN - 0008-4166

IS - 8

ER -