Estimation of greenhouse gases emission from domestic wastewater in Nepal: a scenario-based analysis applicable for developing countries

Aman Shrestha, Tek Narayan Bhattarai, Swastik Ghimire, Bandita Mainali, Helen Treichel, Shukra Raj Paudel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


[Graphical abstract presents]

Domestic wastewater and wastewater treatment plants (WWTPs) are key emitters of greenhouse gases (GHGs). Quantifying these emissions in the present and future is crucial to tackle global climate change issues. As a developing country with few rural and urban wastewater treatment facilities, Nepal may have a unique opportunity to reduce future GHGs emissions by a proper selection of wastewater treatment technology. In this paper, the authors used Python programming to estimate the GHGs emissions from the domestic wastewater sector in Nepal under various technological development scenarios for 2020 to 2040 using the refined 2019 estimation methodology developed by Inter-governmental Panel on Climate Change (IPCC). Results show total equivalent CO2 emission of 3829.43 and 4523.65 Gigagrams in 2020 and 2040, respectively. The 2020 value is seven times greater than Nepal's 2017 national estimates because this study considered rural population and updated methodology. Comparing the technology development scenarios with the Business as Usual scenario, the highest GHGs reduction could be achieved by hybrid constructed wetlands (69.20%) followed by a combined anaerobic and aerobic system with biogas recovery for energy generation (61.72%). Further accuracy may be attained only through the actual measurement of WWTPs emissions and country-specific emission factors. Thus, this paper proposes GHGs estimation of future scenarios portraying urban and rural populations may be invaluable to policymakers of GHGs mitigation for selection of feasible WWTPs, especially in developing countries with limited wastewater treatment facilities and wastewater activity data.

Original languageEnglish
Article number134501
Pages (from-to)1-11
Number of pages11
Publication statusPublished - Aug 2022


  • Domestic wastewater treatment plant
  • Greenhouse gases emission
  • Methane
  • Nitrous oxide


Dive into the research topics of 'Estimation of greenhouse gases emission from domestic wastewater in Nepal: a scenario-based analysis applicable for developing countries'. Together they form a unique fingerprint.

Cite this