Abstract
We introduce a generalization of the approximate factor model that divides the observable variables into groups, allows for arbitrarily strong cross-correlation between the disturbance terms of variables that belong to the same group, and for weak correlation between the disturbances of variables that belong to different groups. We call this model the Grouped Variable Approximate Factor Model. We establish identification, propose an estimation approach based on instrumental variable conditions that hold in the limit, and prove consistency in a dual limit framework. Monte Carlo simulations are used to investigate the performance of the estimator, and the techniques are applied to an analysis of industrial output in the US.
Original language | English |
---|---|
Pages (from-to) | 348-367 |
Number of pages | 20 |
Journal | Journal of Multivariate Analysis |
Volume | 105 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2012 |