Abstract
[Graphic abstract]
3%Ce- and 3%La-promoted 10%Cu/Al2O3 catalysts were synthesized via a sequential incipient wetness impregnation approach and implemented for ethanol CO2 reforming (ECR) at 948–1023 K and stoichiometric feed ratio. CeO2 and La2O3 promoters reduced CuO crystallite size from 32.4 to 27.4 nm due to diluting impact and enhanced the degree of reduction of CuO → Cu0. Irrespective of reaction temperature, 3%La–10%Cu/Al2O3 exhibited the highest reactant conversions, H2 and CO yields followed by 3%Ce–10%Cu/Al2O3 and 10%Cu/Al2O3. The greatest C2H5OH and CO2 conversions of 87.6% and 55.1%, respectively were observed on 3%La–10%Cu/Al2O3 at 1023 K whereas for all catalysts, H2/CO ratios varying from 1.46 to 1.91 were preferred as feedstocks for Fischer-Tropsch synthesis. Activation energy for C2H5OH consumption was also reduced with promoter addition from 53.29 to 47.05 kJ mol−1. The thorough CuO → Cu0 reduction by H2 activation was evident and the Cu0 active phase was resistant to re-oxidation during ECR for all samples. Promoters addition reduced considerably the total carbon deposition from 40.04% to 27.55% and greatly suppressed non-active graphite formation from 26.94% to 4.20% because of their basic character and cycling redox enhancement.
Original language | English |
---|---|
Pages (from-to) | 18398-18410 |
Number of pages | 13 |
Journal | International Journal of Hydrogen Energy |
Volume | 45 |
Issue number | 36 |
DOIs | |
Publication status | Published - 17 Jul 2020 |
Keywords
- Ethanol CO₂ reforming
- CeO₂
- La₂O₃
- Cu-based catalysts
- Syngas
- Hydrogen