Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations

A. Perez-Sanz*, G. Li, P. González-Sampériz, S. P. Harrison

*Corresponding author for this work

Research output: Contribution to journalArticle

43 Citations (Scopus)
4 Downloads (Pure)

Abstract

We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial (piControl) and mid-Holocene (midHolocene, 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene, the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl; have only a limited influence on midHolocene anomalies in ocean-atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.

Original languageEnglish
Pages (from-to)551-568
Number of pages18
JournalClimate of the Past
Volume10
Issue number2
DOIs
Publication statusPublished - 20 Mar 2014

Bibliographical note

Copyright the Author(s) 2014. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint Dive into the research topics of 'Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations'. Together they form a unique fingerprint.

Cite this