Evidence for a resting state network abnormality in adults who stutter

Amir H. Ghaderi*, Masoud N. Andevari, Paul Sowman

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)
    50 Downloads (Pure)

    Abstract

    Neural network-based investigations of stuttering have begun to provide a possible integrative account for the large number of brain-based anomalies associated with stuttering. Here we used resting-state EEG to investigate functional brain networks in adults who stutter (AWS). Participants were 19 AWS and 52 age-, and gender-matched normally fluent speakers. EEGs were recorded and connectivity matrices were generated by LORETA in the theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–20 Hz), and beta2 (20–30 Hz) bands. Small-world propensity (SWP), shortest path, and clustering coefficients were computed for weighted graphs. Minimum spanning tree analysis was also performed and measures were compared by non-parametric permutation test. The results show that small-world topology was evident in the functional networks of all participants. Three graph indices (diameter, clustering coefficient, and shortest path) exhibited significant differences between groups in the theta band and one [maximum betweenness centrality (BC)] measure was significantly different between groups in the beta2 band. AWS show higher BC than control in right temporal and inferior frontal areas and lower BC in the right primary motor cortex. Abnormal functional networks during rest state suggest an anomaly of DMN activity in AWS. Furthermore, functional segregation/integration deficits in the theta network are evident in AWS. These deficits reinforce the hypothesis that there is a neural basis for abnormal executive function in AWS. Increased beta2 BC in the right speech–motor related areas confirms previous evidence that right audio–speech areas are over-activated in AWS. Decreased beta2 BC in the right primary motor cortex is discussed in relation to abnormal neural mechanisms associated with time perception in AWS.
    Original languageEnglish
    Article number16
    Pages (from-to)1-10
    Number of pages10
    JournalFrontiers in Integrative Neuroscience
    Volume12
    DOIs
    Publication statusPublished - 27 Apr 2018

    Bibliographical note

    Copyright the Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Keywords

    • stuttering
    • functional brain networks
    • minimum spanning tree
    • executive function
    • time perception

    Fingerprint

    Dive into the research topics of 'Evidence for a resting state network abnormality in adults who stutter'. Together they form a unique fingerprint.

    Cite this