Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis

Emily P. McCann, Lyndal Henden, Jennifer A. Fifita, Katharine Y. Zhang, Natalie Grima, Denis C. Bauer, Sandrine Chan Moi Fat, Natalie A. Twine, Roger Pamphlett, Matthew C. Kiernan, Dominic B. Rowe, Kelly L. Williams, Ian P. Blair

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with phenotypic and genetic heterogeneity. Approximately 10% of cases are familial, while remaining cases are classified as sporadic. To date, >30 genes and several hundred genetic variants have been implicated in ALS. Methods: Seven hundred and fifty-seven sporadic ALS cases were recruited from Australian neurology clinics. Detailed clinical data and whole genome sequencing (WGS) data were available from 567 and 616 cases, respectively, of which 426 cases had both datasets available. As part of a comprehensive genetic analysis, 853 genetic variants previously reported as ALS-linked mutations or disease-associated alleles were interrogated in sporadic ALS WGS data. Statistical analyses were performed to identify correlation between clinical variables, and between phenotype and the number of ALS-implicated variants carried by an individual. Relatedness between individuals carrying identical variants was assessed using identity-by-descent analysis. Results: Forty-three ALS-implicated variants from 18 genes, including C9orf72, ATXN2, TARDBP, SOD1, SQSTM1 and SETX, were identified in Australian sporadic ALS cases. One-third of cases carried at least one variant and 6.82% carried two or more variants, implicating a potential oligogenic or polygenic basis of ALS. Relatedness was detected between two sporadic ALS cases carrying a SOD1 p.I114T mutation, and among three cases carrying a SQSTM1 p.K238E mutation. Oligogenic/polygenic sporadic ALS cases showed earlier age of onset than those with no reported variant. Conclusion: We confirm phenotypic associations among ALS cases, and highlight the contribution of genetic variation to all forms of ALS.
Original languageEnglish
Pages (from-to)87-95
Number of pages9
JournalJournal of Medical Genetics
Issue number2
Early online date14 May 2020
Publication statusPublished - 1 Feb 2021


  • genetics
  • molecular genetics
  • motor neurone disease
  • neurosciences


Dive into the research topics of 'Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

Cite this