Abstract
The formation of a complex network is highly driven by multi-aspect node influences and interactions, reflected on network structures and the content embodied in network nodes. Limited work has jointly modeled all these aspects, which typically focuses on topological structures but overlooks the heterogeneous interactions behind node linkage and contributions of node content to the interactive heterogeneities. Here, we propose a multi-aspect interaction and influence-unified evolutionary coupled system (MAI-ECS) for network representation by involving node content and linkage-based network structure. MAI-ECS jointly and iteratively learns two systems: a multi-aspect interaction learning system to capture heterogeneous hidden interactions between nodes and an influence propagation system to capture multi-aspect node influences and their propagation between nodes. MAI-ECS couples, unifies and optimizes the two systems toward an effective representation of explicit node content and network structure, and implicit node interactions and influences. MAI-ECS shows superior performance in node classification and link prediction in comparison with the state-of-the-art methods on two real-world datasets. Further, we demonstrate the semantic interpretability of the results generated by MAI-ECS.
Original language | English |
---|---|
Pages (from-to) | 598-605 |
Number of pages | 8 |
Journal | Proceedings of the AAAI Conference on Artificial Intelligence |
Volume | 33 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |
Event | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States Duration: 27 Jan 2019 → 1 Feb 2019 |