TY - JOUR
T1 - Exploiting two-faceted web of trust for enhanced-quality recommendations
AU - Yan, Surong
AU - Zheng, Xiaolin
AU - Chen, Deren
AU - Wang, Yan
PY - 2013
Y1 - 2013
N2 - Traditional collaborative filtering (CF) based recommender systems on the basis of user similarity often suffer from low accuracy because of the difficulty in finding similar users. Incorporating trust network into CF-based recommender system is an attractive approach to resolve the neighbor selection problem. Most existing trust-based CF methods assume that underlying relationships (whether inferred or pre-existing) can be described and reasoned in a web of trust. However, in online sharing communities or e-commerce sites, a web of trust is not always available and is typically sparse. The limited and sparse web of trust strongly affects the quality of recommendation. In this paper, we propose a novel method that establishes and exploits a two-faceted web of trust on the basis of users' personal activities and relationship networks in online sharing communities or e-commerce sites, to provide enhanced-quality recommendations. The developed web of trust consists of interest similarity graphs and directed trust graphs and mitigates the sparsity of web of trust. Moreover, the proposed method captures the temporal nature of trust and interest by dynamically updating the two-faceted web of trust. Furthermore, this method adapts to the differences in user rating scales by using a modified Resnick's prediction formula. As enabled by the Pareto principle and graph theory, new users highly benefit from the aggregated global interest similarity (popularity) in interest similarity graph and the global trust (reputation) in the directed trust graph. The experiments on two datasets with different sparsity levels (i.e., Jester and MovieLens datasets) show that the proposed approach can significantly improve the predictive accuracy and decision-support accuracy of the trust-based CF recommender system.
AB - Traditional collaborative filtering (CF) based recommender systems on the basis of user similarity often suffer from low accuracy because of the difficulty in finding similar users. Incorporating trust network into CF-based recommender system is an attractive approach to resolve the neighbor selection problem. Most existing trust-based CF methods assume that underlying relationships (whether inferred or pre-existing) can be described and reasoned in a web of trust. However, in online sharing communities or e-commerce sites, a web of trust is not always available and is typically sparse. The limited and sparse web of trust strongly affects the quality of recommendation. In this paper, we propose a novel method that establishes and exploits a two-faceted web of trust on the basis of users' personal activities and relationship networks in online sharing communities or e-commerce sites, to provide enhanced-quality recommendations. The developed web of trust consists of interest similarity graphs and directed trust graphs and mitigates the sparsity of web of trust. Moreover, the proposed method captures the temporal nature of trust and interest by dynamically updating the two-faceted web of trust. Furthermore, this method adapts to the differences in user rating scales by using a modified Resnick's prediction formula. As enabled by the Pareto principle and graph theory, new users highly benefit from the aggregated global interest similarity (popularity) in interest similarity graph and the global trust (reputation) in the directed trust graph. The experiments on two datasets with different sparsity levels (i.e., Jester and MovieLens datasets) show that the proposed approach can significantly improve the predictive accuracy and decision-support accuracy of the trust-based CF recommender system.
UR - http://www.scopus.com/inward/record.url?scp=84880888016&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2013.06.035
DO - 10.1016/j.eswa.2013.06.035
M3 - Article
AN - SCOPUS:84880888016
SN - 0957-4174
VL - 40
SP - 7080
EP - 7095
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - 17
ER -