Abstract
Methods for automatically identifying students in need of assistance have been studied for decades. Initially, the work was based on somewhat static factors such as students' educational background and results from various questionnaires, while more recently, constantly accumulating data such as progress with course assignments and behavior in lectures has gained attention. We contribute to this work with results on early detection of students in need of assistance, and provide a starting point for using machine learning techniques on naturally accumulating programming process data. When combining source code snapshot data that is recorded from students' programming process with machine learning methods, we are able to detect high- and low-performing students with high accuracy already after the very first week of an introductory programming course. Comparison of our results to the prominent methods for predicting students' performance using source code snapshot data is also provided. This early information on students' performance is beneficial from multiple viewpoints. Instructors can target their guidance to struggling students early on, and provide more challenging assignments for high-performing students. Moreover, students that perform poorly in the introductory programming course, but who nevertheless pass, can be monitored more closely in their future studies.
Original language | English |
---|---|
Title of host publication | ICER 2015 |
Subtitle of host publication | Proceedings of the 2015 ACM Conference on International Computing Education Research |
Place of Publication | New York, NY |
Publisher | Association for Computing Machinery, Inc |
Pages | 121-130 |
Number of pages | 10 |
ISBN (Electronic) | 9781450336284 |
ISBN (Print) | 9781450336307 |
DOIs | |
Publication status | Published - 2015 |
Externally published | Yes |
Event | Annual ACM Conference on International Computing Education Research (11th : 2015) - Omaha, United States Duration: 9 Aug 2015 → 13 Aug 2015 |
Conference
Conference | Annual ACM Conference on International Computing Education Research (11th : 2015) |
---|---|
Abbreviated title | ICER 2015 |
Country/Territory | United States |
City | Omaha |
Period | 9/08/15 → 13/08/15 |
Keywords
- introductory programming
- source code snapshot analysis
- programming behavior
- educational data mining
- learning analytics
- novice programmers
- detecting students in need of assistance