Faceted polymersomes: a sphere-to-polyhedron shape transformation

Chin Ken Wong, Adam D. Martin, Matthias Floetenmeyer, Robert G. Parton, Martina H. Stenzel, Pall Thordarson

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
13 Downloads (Pure)

Abstract

The creation of “soft” deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly.
Original languageEnglish
Pages (from-to)2725–2731
Number of pages7
JournalChemical Science
Volume10
Issue number9
DOIs
Publication statusPublished - 7 Mar 2019
Externally publishedYes

Bibliographical note

Copyright the Publisher 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Faceted polymersomes: a sphere-to-polyhedron shape transformation'. Together they form a unique fingerprint.

Cite this