Failure analysis of collector circuits associated with wind farms

Ashley P. Clifton*, Aman Maung Than Oo, Mohammad T. Arif

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

Wind farm collector circuits generally comprise several wind turbine generators (WTG’s). WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories) ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.
Original languageEnglish
Article number41
Number of pages5
JournalRenewable Energy and Environmental Sustainability
Volume2
DOIs
Publication statusPublished - 2017
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Failure analysis of collector circuits associated with wind farms'. Together they form a unique fingerprint.

Cite this