Feature relevance assessment of multispectral airborne LiDAR data for tree species classification

N. Amiri*, M. Heurich, P. Krzystek, A. K. Skidmore

*Corresponding author for this work

    Research output: Contribution to journalConference paper

    3 Citations (Scopus)
    6 Downloads (Pure)

    Abstract

    The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavel-ngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37 points/m2. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with L1 regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4-10 pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.

    Original languageEnglish
    Pages (from-to)31-34
    Number of pages4
    JournalThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
    Volume42
    Issue number3
    DOIs
    Publication statusPublished - 30 Apr 2018
    Event2018 ISPRS TC III Mid-Term Symposium on Developments, Technologies and Applications in Remote Sensing - Beijing, China
    Duration: 7 May 201810 May 2018

    Bibliographical note

    Copyright the Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Keywords

    • 3D point clouds
    • Feature analysis
    • Intensity
    • Multispectral lidar
    • Tree species classification

    Fingerprint Dive into the research topics of 'Feature relevance assessment of multispectral airborne LiDAR data for tree species classification'. Together they form a unique fingerprint.

    Cite this