### Abstract

We use the terms ∞-categories and ∞-functors to mean the objects and morphisms in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of fibrant objects. Quasi-categories, Segal categories, complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, θ_{n}-spaces, and fibered versions of each of these are all ∞-categories in this sense. Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, a strict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi-categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants. Cartesian fibrations form a cornerstone in the abstract treatment of “category-like” structures a la Street and play an important role in Lurie's work on quasi-categories. After setting up their basic theory, we state and prove the Yoneda lemma, which has the form of an equivalence between the quasi-category of maps out of a representable fibration and the quasi-category underlying the fiber over its representing element. A companion paper will apply these results to establish a calculus of modules between ∞-categories, which will be used to define and study pointwise Kan extensions along ∞-functors.

Language | English |
---|---|

Pages | 499-564 |

Number of pages | 66 |

Journal | Journal of Pure and Applied Algebra |

Volume | 221 |

Issue number | 3 |

DOIs | |

Publication status | Published - 1 Mar 2017 |

### Fingerprint

### Cite this

*Journal of Pure and Applied Algebra*,

*221*(3), 499-564. https://doi.org/10.1016/j.jpaa.2016.07.003

}

*Journal of Pure and Applied Algebra*, vol. 221, no. 3, pp. 499-564. https://doi.org/10.1016/j.jpaa.2016.07.003

**Fibrations and Yoneda's lemma in an ∞-cosmos.** / Riehl, Emily; Verity, Dominic.

Research output: Contribution to journal › Article › Research › peer-review

TY - JOUR

T1 - Fibrations and Yoneda's lemma in an ∞-cosmos

AU - Riehl, Emily

AU - Verity, Dominic

PY - 2017/3/1

Y1 - 2017/3/1

N2 - We use the terms ∞-categories and ∞-functors to mean the objects and morphisms in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of fibrant objects. Quasi-categories, Segal categories, complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, θn-spaces, and fibered versions of each of these are all ∞-categories in this sense. Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, a strict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi-categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants. Cartesian fibrations form a cornerstone in the abstract treatment of “category-like” structures a la Street and play an important role in Lurie's work on quasi-categories. After setting up their basic theory, we state and prove the Yoneda lemma, which has the form of an equivalence between the quasi-category of maps out of a representable fibration and the quasi-category underlying the fiber over its representing element. A companion paper will apply these results to establish a calculus of modules between ∞-categories, which will be used to define and study pointwise Kan extensions along ∞-functors.

AB - We use the terms ∞-categories and ∞-functors to mean the objects and morphisms in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of fibrant objects. Quasi-categories, Segal categories, complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, θn-spaces, and fibered versions of each of these are all ∞-categories in this sense. Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, a strict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi-categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants. Cartesian fibrations form a cornerstone in the abstract treatment of “category-like” structures a la Street and play an important role in Lurie's work on quasi-categories. After setting up their basic theory, we state and prove the Yoneda lemma, which has the form of an equivalence between the quasi-category of maps out of a representable fibration and the quasi-category underlying the fiber over its representing element. A companion paper will apply these results to establish a calculus of modules between ∞-categories, which will be used to define and study pointwise Kan extensions along ∞-functors.

UR - http://purl.org/au-research/grants/arc/DP130101969

U2 - 10.1016/j.jpaa.2016.07.003

DO - 10.1016/j.jpaa.2016.07.003

M3 - Article

VL - 221

SP - 499

EP - 564

JO - Journal of Pure and Applied Algebra

T2 - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 3

ER -