Fine-tuning large language model based explainable recommendation with explainable quality reward

Mengyuan Yang, Mengying Zhu*, Yan Wang, Linxun Chen, Yilei Zhao, Xiuyuan Wang, Bing Han, Xiaolin Zheng, Jianwei Yin

*Corresponding author for this work

Research output: Contribution to journalConference paperpeer-review

2 Citations (Scopus)

Abstract

Large language model-based explainable recommendation (LLM-based ER) systems can provide remarkable human-like explanations and have widely received attention from researchers. However, the original LLM-based ER systems face three low-quality problems in their generated explanations, i.e., lack of personalization, inconsistency, and questionable explanation data. To address these problems, we propose a novel LLM-based ER model denoted as LLM2ER to serve as a backbone and devise two innovative explainable quality reward models for fine-tuning such a backbone in a reinforcement learning paradigm, ultimately yielding a fine-tuned model denoted as LLM2ER-EQR, which can provide high-quality explanations. LLM2ER-EQR can generate personalized, informative, and consistent high-quality explanations learned from questionable-quality explanation datasets. Extensive experiments conducted on three real-world datasets demonstrate that our model can generate fluent, diverse, informative, and highly personalized explanations.

Original languageEnglish
Pages (from-to)9250-9259
Number of pages10
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number8
DOIs
Publication statusPublished - 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Fingerprint

Dive into the research topics of 'Fine-tuning large language model based explainable recommendation with explainable quality reward'. Together they form a unique fingerprint.

Cite this