TY - JOUR
T1 - First prize
T2 - Novel uropathogen-resistant coatings inspired by marine mussels
AU - Ko, Raymond
AU - Cadieux, Peter A.
AU - Dalsin, Jeffrey L.
AU - Lee, Bruce P.
AU - Elwood, Chelsea N.
AU - Razvi, Hassan
PY - 2008/6/1
Y1 - 2008/6/1
N2 - Background and Purpose: Success in the prevention of urinary device infections has been elusive, largely due to multiple bacterial attachment strategies and the development of urinary conditioning films. We investigated a novel anti-fouling coating consisting of mussel adhesive protein mimics conjugated to polyethylene glycol (mPEG-DOPA3) for its potential to resist conditioning film formation and uropathogen attachment in human urine. Methods: Model TiO2 -coated silicon disks (∼ 75 mm2) were either coated with mPEG-DOPA3 or left uncoated and sterilized using ethylene oxide gas. For bacterial attachment experiments, coated and uncoated surfaces were separately challenged with bacterial strains comprising six major uropathogenic species for 24 hours at 37°C in human pooled urine. Starting inoculum for each strain was 105 CFU/mL and 0.5 mL was used per disk. Following incubation, the disks were thoroughly rinsed in phosphate buffered saline to remove non-adherent and weakly-adherent organisms and cell scrapers were employed to dislodge those that were firmly attached. Adherent bacteria were quantitated using dilution plating. Representative disks were also examined using scanning electron microscopy, energy dispersive x-ray analysis, and live/dead viability staining. Results: The mPEG-DOPA3 coating significantly resisted the attachment of all uropathogens tested, with a maximum >231-fold reduction in adherence for Escherichia coli GR-12, Enterococcus faecalis 23241, and Proteus mirabilis 296 compared to uncoated TiO2 disks. Scanning electron microscopy and viability staining analyses also reflected these results and demonstrated the ability of the coating to resist urinary constituent adherence as well. Conclusion: Model surfaces coated with mPEG-DOPA3 strongly resisted both urinary film formation and bacterial attachment in vitro. Future in vitro and in vivo studies will be conducted to assess whether similar findings can be demonstrated when these polymer coatings are applied to urologic devices.
AB - Background and Purpose: Success in the prevention of urinary device infections has been elusive, largely due to multiple bacterial attachment strategies and the development of urinary conditioning films. We investigated a novel anti-fouling coating consisting of mussel adhesive protein mimics conjugated to polyethylene glycol (mPEG-DOPA3) for its potential to resist conditioning film formation and uropathogen attachment in human urine. Methods: Model TiO2 -coated silicon disks (∼ 75 mm2) were either coated with mPEG-DOPA3 or left uncoated and sterilized using ethylene oxide gas. For bacterial attachment experiments, coated and uncoated surfaces were separately challenged with bacterial strains comprising six major uropathogenic species for 24 hours at 37°C in human pooled urine. Starting inoculum for each strain was 105 CFU/mL and 0.5 mL was used per disk. Following incubation, the disks were thoroughly rinsed in phosphate buffered saline to remove non-adherent and weakly-adherent organisms and cell scrapers were employed to dislodge those that were firmly attached. Adherent bacteria were quantitated using dilution plating. Representative disks were also examined using scanning electron microscopy, energy dispersive x-ray analysis, and live/dead viability staining. Results: The mPEG-DOPA3 coating significantly resisted the attachment of all uropathogens tested, with a maximum >231-fold reduction in adherence for Escherichia coli GR-12, Enterococcus faecalis 23241, and Proteus mirabilis 296 compared to uncoated TiO2 disks. Scanning electron microscopy and viability staining analyses also reflected these results and demonstrated the ability of the coating to resist urinary constituent adherence as well. Conclusion: Model surfaces coated with mPEG-DOPA3 strongly resisted both urinary film formation and bacterial attachment in vitro. Future in vitro and in vivo studies will be conducted to assess whether similar findings can be demonstrated when these polymer coatings are applied to urologic devices.
UR - http://www.scopus.com/inward/record.url?scp=46249086184&partnerID=8YFLogxK
U2 - 10.1089/end.2008.0049
DO - 10.1089/end.2008.0049
M3 - Article
C2 - 18484883
AN - SCOPUS:46249086184
SN - 0892-7790
VL - 22
SP - 1153
EP - 1160
JO - Journal of Endourology
JF - Journal of Endourology
IS - 6
ER -