Projects per year
Abstract
Our nanomineralogical investigation of melt inclusions in corundum xenoliths from the Mount Carmel area, Israel, has revealed seven IMA-approved new minerals since 2021. We report here the first terrestrial occurrence of kaitianite (Ti3+2Ti4+O5). Kaitianite occurs as exsolution lamellae in tistarite (Ti2O3), in a melt inclusions together with a Ti,Al,Zr-oxide, a MgTi3+2Al4SiO12 phase, spinel, sapphirine, Ti-sulfide, alabandite, and Si-rich glass in a corundum grain (Grain 1125C2). The chemical composition of kaitianite using electron probe microanalysis is (wt%) Ti2O3 58.04, TiO2 37.82, Al2O3 2.87, MgO 0.85, ZrO2 0.10, CaO 0.02, SiO2 0.02, sum 99.73, yielding an empirical formula of (Ti3+1.78Al0.12Ti4+0.05Mg0.05)(Ti4+1.00)O5, with the Ti3+ and Ti4+ partitioned, assuming a stoichiometry of three cations and five oxygen anions pfu. Electron back-scatter diffraction reveals that kaitianite has the monoclinic C2/c γ-Ti3O5-type structure with cell parameters: a = 10.12 Å, b = 5.07 Å, c = 7.18 Å, β = 112°, V = 342 Å3, and Z = 4. Kaitianite is a high-temperature oxide phase, formed in melt pockets under reduced conditions in corundum-aggregate xenoliths derived from the upper mantle beneath Mount Carmel, Israel.
Original language | English |
---|---|
Article number | 1097 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Minerals |
Volume | 13 |
Issue number | 8 |
Early online date | 17 Aug 2023 |
DOIs | |
Publication status | Published - Aug 2023 |
Bibliographical note
Copyright the Author(s) 2023. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- corundum
- high-temperature oxides
- Israel
- kaitianite
- melt inclusions
- Mount Carmel
- TiTiO
- tistarite
Fingerprint
Dive into the research topics of 'First Terrestrial Occurrence of Kaitianite (Ti3+2Ti4+O5) from the Upper Mantle beneath Mount Carmel, Israel'. Together they form a unique fingerprint.Projects
- 1 Active
-
ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) (ARC)
O'Reilly, S., Wilde, S., Griffin, B., Pearson, N., McCuaig, T., Wu, F., Kerrich, R., Brown, M., Gessner, K., Mainprice, D., Nemchin, A., Van Kranendonk, M., Foley, S., McCammon, C., Clark, S., Kilburn, M., Belousova, E., Fiorentini, M., O'Neill, C. J., Yang, Y., Barley, M. & Li, Z.
21/06/11 → …
Project: Research