First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

Margot M. Brouwer*, Manus R. Visser, Andrej Dvornik, Henk Hoekstra, Konrad Kuijken, Edwin A. Valentijn, Maciej Bilicki, Chris Blake, Sarah Brough, Hugo Buddelmeijer, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt, Benne W. Holwerda, Andrew M. Hopkins, Dominik Klaes, Jochen Liske, Jon Loveday, John McFarland, Reiko NakajimaCristóbal Sifón, Edward N. Taylor

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ~180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.

Original languageEnglish
Pages (from-to)2547-2559
Number of pages13
JournalMonthly Notices of the Royal Astronomical Society
Volume466
Issue number3
DOIs
Publication statusPublished - 2017
Externally publishedYes

Keywords

  • Cosmology: theory
  • Dark matter
  • Galaxies: haloes
  • Gravitation
  • Gravitational lensing: weak
  • Surveys

Fingerprint Dive into the research topics of 'First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements'. Together they form a unique fingerprint.

Cite this