Flash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment

Ivan V. Zelepukin*, Olga Yu Griaznova, Konstantin G. Shevchenko, Andrey V. Ivanov, Ekaterina V. Baidyuk, Natalia B. Serejnikova, Artur B. Volovetskiy, Sergey M. Deyev, Andrei V. Zvyagin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)
46 Downloads (Pure)

Abstract

Tumour microenvironment hinders nanoparticle transport deep into the tissue precluding thorough treatment of solid tumours and metastatic nodes. We introduce an anticancer drug delivery concept termed FlaRE (Flash Release in Endothelium), which represents alternative to the existing approaches based on enhanced permeability and retention effect. This approach relies on enhanced drug-loaded nanocarrier accumulation in vessels of the target tumour or metastasised organ, followed by a rapid release of encapsulated drug within tens of minutes. It leads to a gradient-driven permeation of the drug to the target tissue. This pharmaceutical delivery approach is predicted by theoretical modelling and validated experimentally using rationally designed MIL-101(Fe) metal-organic frameworks. Doxorubicin-loaded MIL-101 nanoparticles get swiftly trapped in the vasculature of the metastasised lungs, disassemble in the blood vessels within 15 minutes and release drug, which rapidly impregnates the organ. A significant improvement of the therapeutic outcome is demonstrated in animal models of early and late-stage B16-F1 melanoma metastases with 11-fold and 4.3-fold decrease of pulmonary melanoma nodes, respectively.

Original languageEnglish
Article number6910
Pages (from-to)1-15
Number of pages15
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Bibliographical note

Copyright © 2022, The Author(s). Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Flash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment'. Together they form a unique fingerprint.

Cite this