Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma

Sadahiro Kaneko, Eric Suero Molina, Peter Sporns, Stephanie Schipmann, David Black, Walter Stummer

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
16 Downloads (Pure)

Abstract

OBJECTIVE 5-Aminolevulinic acid (5-ALA) induces fluorescence in high-grade glioma (HGG), which is used for resection. However, the value of 5-ALA–induced fluorescence in low-grade glioma (LGG) is unclear. Time dependency and time kinetics have not yet been investigated. The purpose of this study was to investigate real-time kinetics of protoporphyrin IX (PpIX) in LGG based on hyperspectral fluorescence-based measurements and identify factors that predict fluorescence. 

METHODS Patients with grade II gliomas and imaging from which HGGs could not be completely ruled out received 5-ALA at 20 mg/kg body weight 4 hours prior to surgery. Fluorescence intensity (FI) and PpIX concentration (CPpIX) were measured in tumor tissue utilizing a hyperspectral camera. Apparent diffusion coefficient (ADC)–based tumor cell density, Ki-67/MIB-1 index, chromosomal 1p/19q codeletion, and 18F-fluoroethyl-l-tyrosine (18F-FET) PET values and their role for predicting fluorescence were evaluated. 

RESULTS Eighty-one biopsies from 25 patients were included. Tissues with fluorescence demonstrated FI and CPpIX maxima between 7 and 8 hours after administration. When visible fluorescence was observed, peaks of FI and CPpIX were observed within this 7- to 8-hour time frame, regardless of any MRI gadolinium contrast enhancement. Gadolinium enhancement (p = 0.008), Ki-67/MIB-1 index (p < 0.001), 18F-FET PET uptake ratio (p = 0.004), and ADC-based tumor cellularity (p = 0.017) significantly differed between fluorescing and nonfluorescing tissue, but not 1p/19q codeletions. Logistic regression demonstrated that 18F-FET PET uptake and Ki-67/MIB-1 index were independently related to fluorescence. 

CONCLUSIONS This study reports a fluorescence-based assessment of CPpIX in human LGG tissues related to 18F-FET PET uptake and Ki-67/MIB-1. As in HGGs, fluorescence in LGGs peaked between 7 and 8 hours after 5-ALA application, which has consequences for the timing of administration.
Original languageEnglish
Pages (from-to)9-15
Number of pages7
JournalJournal of Neurosurgery
Volume136
Issue number1
Early online date18 Jun 2021
DOIs
Publication statusPublished - Jan 2022
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • 5-ALA
  • fluorescence-guided resection
  • low-grade glioma
  • PpIX concentration
  • oncology

Fingerprint

Dive into the research topics of 'Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma'. Together they form a unique fingerprint.

Cite this