Abstract
The effectiveness of human security-based guard patrol systems often faces challenges related to the consistency of perimeter checks regarding timing and patterns. Some solutions use autonomous drones for monitoring assistance but primarily optimize their camera-based object detection capabilities for favorable lighting conditions. This research introduces an innovative approach to address these limitations—a flying watchdog designed to augment patrol operations with predetermined flight patterns, enabling checkpoint identification and position verification through vision-based methods. The system has a laser-based data transmitter to relay real-time location and timing information to a receiver. The proposed system consists of drone and ground checkpoints with distinctive shapes and colored lights, further enhanced by solar panels serving as laser data receivers. The result demonstrates the drone’s ability to detect four white dot LEDs with square configurations at distances ranging from 18 to 20 m, even under deficient light conditions based on the OpenCV detection algorithm. Notably, the study underscores the significance of achieving an even distribution of light shapes to mitigate light scattering effects on readings while also confirming that ambient light levels up to a maximum of 390 Lux have no adverse impact on the performance of the sensing device.
Original language | English |
---|---|
Article number | 340 |
Pages (from-to) | 1-20 |
Number of pages | 20 |
Journal | Future Internet |
Volume | 15 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2023 |
Bibliographical note
Copyright the Author(s) 2023. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- drone
- patrol
- OpenCV
- laser
- monitoring
- data communication
- computer vision
- IoT
- watchdog