Abstract
Major and trace element data and mineral chemical data indicate that the range in rock types making up the Dunedin volcano has developed by crystal fractionation processes acting upon mantle derived basaltic magmas at various levels in the crust and upper mantle. A diversity among parental materials and the operation of the fractionation process at varying levels in the crust and mantle under varying conditions of pH2O have resulted in a diverse series of overlapping fractionation trends. 'End member' series are: basalt-hawaiite-mugearite-benmoreite; basanite-nepheline hawaiitenepheline mugearite-nepheline benmoreite; moderately potassic variants on these series. The phonolitic rocks of the volcano are low pressure differentiates derived by fractional crystallization, involving feldspar, as end member products in all the series outlined above. Quartz normative trachytes of the volcano appear to be differentiates from a distinct saturated or oversaturated magma series of different strontium isotopic and trace element characteristics from the undersaturated magma series.
Original language | English |
---|---|
Pages (from-to) | 157-182 |
Number of pages | 26 |
Journal | Contributions to Mineralogy and Petrology |
Volume | 53 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 1975 |