Projects per year
Abstract
Let Δ be the Laplace-Beltrami operator acting on a nondoubling manifold with two ends Rm♯Rn with m > n ≥ 3. Let ht(x,y) be the kernels of the semigroup e−tΔ generated by Δ. We say that a non-negative self-adjoint operator L on L2(Rm♯Rn) has a heat kernel with upper bound of Gaussian type if the kernel ht(x,y) of the semigroup e−tL satisfies ht(x,y) ≤ Chαt(x,y) for some constants C and α. This class of operators includes the Schrödinger operator L = Δ + V where V is an arbitrary non-negative potential. We then obtain upper bounds of the Poisson semigroup kernel of L together with its time derivatives and use them to show the weak-type (1, 1) estimate for the holomorphic functional calculus M(√L) where M(z) is a function of Laplace transform type. Our result covers the purely imaginary powers Lis , s ∈ R, as a special case and serves as a model case for weak-type (1, 1) estimates of singular integrals with non-smooth kernels on non-doubling spaces.
Original language | English |
---|---|
Pages (from-to) | 713-747 |
Number of pages | 35 |
Journal | Indiana University Mathematics Journal |
Volume | 69 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2020 |
Fingerprint
Dive into the research topics of 'Functional calculus of operators with heat kernel bounds on non-doubling manifolds with ends'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Multiparameter Harmonic Analysis: Weighted Estimates for Singular Integrals
Duong, X., Ward, L., Li, J., Lacey, M., Pipher, J. & MQRES, M.
16/02/16 → 30/06/20
Project: Research