TY - JOUR
T1 - Functional organisation of central cardiovascular pathways
T2 - Studies using c-fos gene expression
AU - Dampney, R. A L
AU - Horiuchi, J.
PY - 2003/12
Y1 - 2003/12
N2 - Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.
AB - Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.
UR - http://www.scopus.com/inward/record.url?scp=1642575163&partnerID=8YFLogxK
U2 - 10.1016/j.pneurobio.2003.11.001
DO - 10.1016/j.pneurobio.2003.11.001
M3 - Review article
C2 - 14757116
AN - SCOPUS:1642575163
SN - 0301-0082
VL - 71
SP - 359
EP - 384
JO - Progress in Neurobiology
JF - Progress in Neurobiology
IS - 5
ER -