Gauging defects in quantum spin systems: A case study

Jacob C. Bridgeman, Alexander Hahn, Tobias J. Osborne, Ramona Wolf

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The goal of this work is to build a dynamical theory of defects for quantum spin systems. This is done by explicitly giving an exhaustive case study of a one-dimensional spin chain with Vec(Z/2Z) fusion rules, which can easily be extended to more general settings. A kinematic theory for an indefinite number of defects is first introduced exploiting distinguishable Fock space. Dynamics are then incorporated by allowing the defects to become mobile via a microscopic Hamiltonian. This construction is extended to topologically ordered systems by restricting to the ground state eigenspace of Hamiltonians generalizing the golden chain. Technically, this is done by employing generalized tube algebra techniques to model the defects in the chain. We illustrate this approach for the Vec(Z/2Z) spin chain, in whose case the resulting dynamical defect model is equivalent to the critical transverse Ising model.
Original languageEnglish
Article number134111
Pages (from-to)134111-1-134111-18
Number of pages18
JournalPhysical Review B
Volume101
Issue number13
DOIs
Publication statusPublished - 1 Apr 2020
Externally publishedYes

Cite this