Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem

Thierry Coulhon*, Adam Sikora

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

136 Citations (Scopus)

Abstract

We prove that in the presence of L2 Gaussian estimates, the so-called Davies-Gaffney estimates, on-diagonal upper bounds imply precise off-diagonal Gaussian upper bounds for the kernels of analytic families of operators on metric measure spaces.

Original languageEnglish
Pages (from-to)507-544
Number of pages38
JournalProceedings of the London Mathematical Society
Volume96
Issue number2
DOIs
Publication statusPublished - Mar 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem'. Together they form a unique fingerprint.

Cite this