GCPBayes pipeline: a tool for exploring pleiotropy at the gene level

Yazdan Asgari*, Pierre-Emmanuel Sugier, Taban Baghfalaki, Elise Lucotte, Mojgan Karimi, Mohammed Sedki, Amélie Ngo, Benoit Liquet, Thérèse Truong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
30 Downloads (Pure)

Abstract

Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group's GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.

Original languageEnglish
Article numberlqad065
Pages (from-to)1-8
Number of pages8
JournalNAR Genomics and Bioinformatics
Volume5
Issue number3
DOIs
Publication statusPublished - 1 Sept 2023

Bibliographical note

Copyright © 2023 The Author(s). Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Susceptibility loci
  • Association
  • Multiple
  • Ovarian
  • Breast
  • Variants
  • Prostate

Fingerprint

Dive into the research topics of 'GCPBayes pipeline: a tool for exploring pleiotropy at the gene level'. Together they form a unique fingerprint.

Cite this