Abstract
Objective: Human embryonic stem cells (hESCs) have the potential to give rise to all types of cells in the human body when appropriately induced to differentiate. Stem cells can differentiate spontaneously into the three-germ layer derivatives by embryoid bodies (EBs) formation. However, the two-dimensional (2D) adherent culture of hESCs under defined conditions is commonly used for directed differentiation toward a specific type of mature cells. In this study, we aimed to determine the propensity of the Royan hESC lines based on comparison of expression levels of 46 lineage specific markers.
Materials and Methods: In this experimental study, we have compared the expression of lineage-specific markers in hESC lines during EB versus adherent-based spontaneous differentiation. We used quantitative real-time polymerase chain reaction (qRT-PCR) to assess expressions of 46 lineage-specific markers in 4 hESC lines, Royan H1 (RH1), RH2, RH5, and RH6, during spontaneous differentiation in both EB and adherent cultures at 0, 10, and 30 days after initiation of differentiation.
Results: Based on qRT-PCR data analysis, the liver and neuronal markers had higher expression levels in EBs, whereas skin-specific markers expressed at higher levels in the adherent culture. The results showed differential expression patterns of some lineage-specific markers in EBs compared with the adherent cultures.
Conclusion: According to these results, possibly the spontaneous differentiation technique could be a useful method for optimization of culture conditions to differentiate stem cells into specific cell types such ectoderm, neuron, endoderm and hepatocyte. This approach might prove beneficial for further work on maximizing the efficiency of directed differentiation and development of novel differentiation protocols.
Original language | English |
---|---|
Pages (from-to) | 290-299 |
Number of pages | 10 |
Journal | Cell Journal |
Volume | 21 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Copyright the Author(s). Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Differentiation
- Gene Expression
- Pluripotency
- Propensity
- Stem Cell