Generalized Hardy operators

The Anh Bui, Piero D’Ancona*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Consider the operator on L2 (Rd) La = (−Δ)α/2 + a|x|−α with 0 < α < min {2,d} . Under the condition a ⩾ − 2αΓ((d+α)/4)2 Γ(( d−α)/4)2 the operator is non negative and selfadjoint. We prove that fractional powers Las/2 for s ∈ (0, 2] satisfy the estimates Las/2 f||Lp ≲ (−Δ)αs/4f||Lp, ||(−Δ)s/2f||Lp ≲ Laαs/4f||Lp for suitable ranges of p. Our result fills the remaining gap in earlier results from Killip et al (2018 Math. Z. 288 1273-98); Merz (2021 Math. Z. 299 101-21); Frank et al (Int. Math. Res. Not. 2021 2284-303). The method of proof is based on square function estimates for operators whose heat kernel has a weak decay.

Original languageEnglish
Pages (from-to)171-198
Number of pages28
JournalNonlinearity
Volume36
Issue number1
DOIs
Publication statusPublished - 1 Jan 2023

Keywords

  • Fractional Laplacian
  • Hardy inequality
  • Hardy operator
  • heat kernel
  • square function

Fingerprint

Dive into the research topics of 'Generalized Hardy operators'. Together they form a unique fingerprint.

Cite this