Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment

Mary Ann Moran*, Alison Buchan, José M. González, John F. Heidelberg, William B. Whitman, Ronald P. Klene, James R. Henriksen, Gary M. King, Robert Belas, Clay Fuqua, Lauren Brinkac, Matt Lewis, Shivani Johri, Bruce Weaver, Grace Pai, Jonathan A. Elsen, Elisha Rahe, Wade M. Sheldon, Wenying Ye, Todd R. MillerJane Carlton, David A. Rasko, Ian T. Paulsen, Qinghu Ren, Sean C. Daugherty, Ribert T. Deboy, Robert J. Dodson, A. Scott Durkin, Ramana Madupu, William C. Nelson, Steven A. Sullivan, M. J. Rosovitz, Daniel H. Haft, Jeremy Selengut, Naomi Ward

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

372 Citations (Scopus)


Since the recognition of prokaryotes as essential components of the oceanic food web1, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured2 or have only been grown to low densities in sea water3,4. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise ∼10-20% of coastal and oceanic mixed-layer bacterioplankton2,5,6,7. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.

Original languageEnglish
Pages (from-to)910-913
Number of pages4
Issue number7019
Publication statusPublished - 16 Dec 2004
Externally publishedYes


Dive into the research topics of 'Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment'. Together they form a unique fingerprint.

Cite this