Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps

Tina Wunderlin*, Belinda Ferrari, Michelle Power

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    23 Citations (Scopus)

    Abstract

    Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 103 cells mL-1 of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.

    Original languageEnglish
    Article numberfiw132
    Pages (from-to)1-12
    Number of pages12
    JournalFEMS Microbiology Ecology
    Volume92
    Issue number9
    DOIs
    Publication statusPublished - 1 Sept 2016

    Keywords

    • 16S rRNA gene
    • Alpine
    • Altitude
    • Bacterial diversity
    • Community structure
    • Snow

    Fingerprint

    Dive into the research topics of 'Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps'. Together they form a unique fingerprint.

    Cite this