Gravitational conundrum? Dynamical mass segregation versus disruption of binary stars in dense stellar systems

Richard De Grijs*, Chengyuan Li, Yong Zheng, Licai Deng, Yi Hu, M. B N Kouwenhoven, James E. Wicker

*Corresponding author for this work

Research output: Contribution to journalArticle

16 Citations (Scopus)
7 Downloads (Pure)

Abstract

Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the ≳ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M⊙) with increasing distance from the cluster center, specifically between the inner 10″-20″ (approximately equivalent to the cluster's core and half-mass radii) and the outer 60″-80″. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems - with relatively low binding energies compared to the kinetic energy of their stellar members - in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

Original languageEnglish
Article number4
Pages (from-to)1-8
Number of pages8
JournalAstrophysical Journal
Volume765
Issue number1
DOIs
Publication statusPublished - 1 Mar 2013
Externally publishedYes

Bibliographical note

Copyright 2013 The American Astronomical Society. First published in the Astrophysical Journal, 765(4), 4, 2013. The original publication is available at https://doi.org/10.1088/0004-637X/765/1/4, published by IOP Publishing. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • binaries: general
  • galaxies: star clusters: individual (NGC 1818)
  • HertzsprungRussell and C-M diagrams
  • Magellanic Clouds
  • stars: kinematics and dynamics

Fingerprint Dive into the research topics of 'Gravitational conundrum? Dynamical mass segregation versus disruption of binary stars in dense stellar systems'. Together they form a unique fingerprint.

  • Cite this

    De Grijs, R., Li, C., Zheng, Y., Deng, L., Hu, Y., Kouwenhoven, M. B. N., & Wicker, J. E. (2013). Gravitational conundrum? Dynamical mass segregation versus disruption of binary stars in dense stellar systems. Astrophysical Journal, 765(1), 1-8. [4]. https://doi.org/10.1088/0004-637X/765/1/4