TY - JOUR
T1 - Handheld x-ray fluorescence spectrometers
T2 - Radiation exposure risks of matrix-specific measurement scenarios
AU - Rouillon, Marek
AU - Kristensen, Louise J.
AU - Gore, Damian B.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - This study investigates X-ray intensity and dispersion around handheld X-ray fluorescence (XRF) instruments during the measurement of a range of sample matrices to establish radiation exposure risk during operation. Four handheld XRF instruments representing three manufacturers were used on four smooth, flatlying materials of contrasting matrix composition. Dose rates were measured at 10, 20, 30, and 40 cm intervals every 308 around the instrument at 0 and 458 from the horizontal, as well as vertically from the instrument screen. The analysis of polyethylene recorded dose rates 156 times higher (on average) than steel measurements and 34 times higher than both quartz sand and quartz sandstone. A worst-case exposure scenario was assumed where a user analyses a polyethylene material at arms reach for 1 h each working day for one year. This scenario resulted in an effective body dose of 73.5 lSv, equivalent to three to four chest X-rays (20 lSv) a year, 20 times lower than the average annual background radiation exposure in Australia and well below the annual exposure limit of 1 mSv for non-radiation workers. This study finds the advantages of using handheld XRF spectrometers far outweighs the risk of low radiation exposure linked to X-ray scattering from samples.
AB - This study investigates X-ray intensity and dispersion around handheld X-ray fluorescence (XRF) instruments during the measurement of a range of sample matrices to establish radiation exposure risk during operation. Four handheld XRF instruments representing three manufacturers were used on four smooth, flatlying materials of contrasting matrix composition. Dose rates were measured at 10, 20, 30, and 40 cm intervals every 308 around the instrument at 0 and 458 from the horizontal, as well as vertically from the instrument screen. The analysis of polyethylene recorded dose rates 156 times higher (on average) than steel measurements and 34 times higher than both quartz sand and quartz sandstone. A worst-case exposure scenario was assumed where a user analyses a polyethylene material at arms reach for 1 h each working day for one year. This scenario resulted in an effective body dose of 73.5 lSv, equivalent to three to four chest X-rays (20 lSv) a year, 20 times lower than the average annual background radiation exposure in Australia and well below the annual exposure limit of 1 mSv for non-radiation workers. This study finds the advantages of using handheld XRF spectrometers far outweighs the risk of low radiation exposure linked to X-ray scattering from samples.
UR - http://www.scopus.com/inward/record.url?scp=84953395100&partnerID=8YFLogxK
U2 - 10.1366/14-07809
DO - 10.1366/14-07809
M3 - Article
C2 - 26037330
AN - SCOPUS:84953395100
SN - 0003-7028
VL - 69
SP - 815
EP - 822
JO - Applied Spectroscopy
JF - Applied Spectroscopy
IS - 7
ER -