Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems

Xuan Thinh Duong*, Steve Hofmann, Dorina Mitrea, Marius Mitrea, Lixin Yan

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    33 Citations (Scopus)

    Abstract

    This article has three aims. First, we study Hardy spaces, h pL(Ω), associated with an operator L which is either the Dirichlet Laplacian ΔD or the Neumann Laplacian ΔN on a bounded Lipschitz domain Ω in Rn, for 0 < p ≤ 1. We obtain equivalent characterizations of these function spaces in terms of maximal functions and atomic decompositions. Second, we establish regularity results for the Green operators, regarded as the inverses of the Dirichlet and Neumann Laplacians, in the context of Hardy spaces associated with these operators on a bounded semiconvex domain Ω in Rn. Third, we study relations between the Hardy spaces associated with operators and the standard Hardy spaces hpr (Ω) and hp z (Ω), then establish regularity of the Green operators for the Dirichlet problem on a bounded semiconvex domain Ω in Rn, and for the Neumann problem on a bounded convex domain Ω in Rn, in the context of the standard Hardy spaces hpr (Ω) and hpz (Ω). This gives a new solution to the conjecture made by D.-C. Chang, S. Krantz and E.M. Stein regarding the regularity of Green operators for the Dirichlet and Neumann problems on h pr (Ω) and hpz (Ω), respectively, for all n/ n+1 < p ≤ 1.

    Original languageEnglish
    Pages (from-to)183-236
    Number of pages54
    JournalRevista Matematica Iberoamericana
    Volume29
    Issue number1
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems'. Together they form a unique fingerprint.

    Cite this