HDL improves cholesterol and glucose homeostasis and reduces atherosclerosis in diabetes-associated atherosclerosis

Belinda A. Di Bartolo, Siân P. Cartland, Scott Genner, Pradeep Manuneedhi Cholan, Melissa Vellozzi, Kerry-Anne Rye, Mary M. Kavurma

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
38 Downloads (Pure)

Abstract

Background and Aims: Apolipoprotein A-I (ApoA-I), the main component of high-density lipoprotein (HDL), not only promotes reverse cholesterol transport (RCT) in atherosclerosis but also increases insulin secretion in pancreatic β-cells, suggesting that interventions which raise HDL levels may be beneficial in diabetes-associated cardiovascular disease (CVD). Previously, we showed that TNF-related apoptosis-inducing ligand (TRAIL) deletion in Apolipoprotein Eknockout (Apoe-/- ) mice results in diabetes-accelerated atherosclerosis in response to a "Western" diet. Here, we sought to identify whether reconstituted HDL (rHDL) could improve features of diabetes-associated CVD in Trail-/-Apoe-/- mice.

Methods and Results: Trail-/-Apoe-/- and Apoe-/- mice on a "Western" diet for 12 weeks received 3 weekly infusions of either PBS (vehicle) or rHDL (containing ApoA-I (20 mg/kg) and 1-palmitoyl-2-linoleoyl phosphatidylcholine). Administration of rHDL reduced total plasma cholesterol, triglyceride, and glucose levels in Trail-/-Apoe-/- but not in Apoe-/- mice, with no change in weight gain observed. rHDL treatment also improved glucose clearance in response to insulin and glucose tolerance tests. Immunohistological analysis of pancreata revealed increased insulin expression/production and a reduction in macrophage infiltration in mice with TRAIL deletion. Furthermore, atherosclerotic plaque size in Trail-/-Apoe-/- mice was significantly reduced associating with increased expression of the M2 macrophage marker CD206, suggesting HDL's involvement in the polarization of macrophages. rHDL also increased vascular mRNA expression of RCT transporters, ABCA1 and ABCG1, in Trail-/-Apoe-/- but not in Apoe-/- mice. Conclusions. rHDL improves features of diabetes-associated atherosclerosis in mice. These findings support the therapeutic potential of rHDL in the treatment of atherosclerosis and associated diabetic complications. More studies are warranted to understand rHDL's mechanism of action.

Original languageEnglish
Article number6668506
Pages (from-to)1-10
Number of pages10
JournalJournal of Diabetes Research
Volume2021
DOIs
Publication statusPublished - 21 May 2021
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'HDL improves cholesterol and glucose homeostasis and reduces atherosclerosis in diabetes-associated atherosclerosis'. Together they form a unique fingerprint.

Cite this